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Two methods for calculating the available potential energy (APE) of an isolated
feature in a density-stratified fluid, such as an internal solitary wave or an eddy, are
compared. The first formulation calculates the APE by integrating the perturbation
potential energy density Ew . The second uses an available potential energy density
Ea . Both formulations are based on the reference density obtained by adiabatically
rearranging the density field to a state of minimum energy. It is shown, under more
general conditions than used previously, that (i) the integrals of Ew and Ea over a
finite domain are identical; and (ii) that for an isolated feature in an unbounded
domain, the far-field density ρ̄(z) can be used as the reference density if Ea is used
to find the APE. This is not the case when Ew is used, hence use of the available
potential energy density formulation is simpler in this situation.

1. Introduction
Available potential energy (APE) is the potential energy that can be converted to

other forms of mechanical energy, e.g. kinetic energy, and which is ultimately available
for mixing. Hence determining the APE is an important problem. Relatively simple
cases include isolated disturbances such as internal solitary-like waves (Klymak &
Moum 2003; Klymak et al. 2006; Scotti, Beardsley & Butman 2006; Lamb 2007) or
eddies (Prater & Sanford 1994; Benzohra & Millot 1995). The available potential
energy of more complicated flows, such as the interaction of eddies and convection
(Legg & McWilliams 2001) and eddies interacting with a sloping thermocline (Henning
& Vallis 2004) has also been considered, as has the available potential energy of the
ocean (Huang 2005). It is an important concept for understanding mixing processes
(Winters et al. 1995; Arneborg 2002).

Here two different means of calculating the available potential energy of an isolated
feature are compared. For simplicity, we assume an incompressible, inviscid, non-
diffusive, two-dimensional flow vertically confined to lie between two horizontal, rigid
boundaries at z = −H and z = 0. All the results are directly applicable to three-
dimensional flows and, because the Boussinesq approximation is not made, can be
easily extended to include flows with a free surface. The results are also valid for both
continuous and layered stratifications.

The first method is based on calculating the difference in the potential energy of
the perturbed state and of a reference state obtained by adiabiatically rearranging
the density field to the state with minimum potential energy (Lorenz 1955; Hebert
1988; Winters et al. 1995). In the resulting stable stratification, ρ̄r (z), the isopycnals lie
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along geopotentials. Thus, in this method the perturbation potential energy density

Ew = ρwgz, (1.1)

where ρw = ρ − ρ̄r (z) is the density perturbation, is integrated over the volume under
consideration. The second method uses the available potential energy density,

Ea(x, z, t) = g

∫ z∗(x,z,t)

z

(ρ̄(s) − ρ(x, z, t)) ds, (1.2)

where z∗(x, z, t) is the height of the fluid parcel at (x, z) at time t in the reference state.
Ew and Ea have the same integrated values over the domain so either formulation can
be used to compute the total available potential energy; however use of the available
potential energy density Ea has several advantages, many of which have been pointed
out by previous authors (Andrews 1981; Holliday & McIntyre 1981; Shepherd 1993;
Scotti et al. 2006; Lamb 2007). These include the fact that Ea is positive definite,
that it reduces to the traditional linear potential energy density g2ρ2

w/2N2 in the
small-amplitude limit, where N is the buoyancy frequency of the reference state,
that it is independent of the coordinate system, and that, in combination with the
kinetic energy density Ek , it satisfies a relatively simple conservation law. If the
reference density is invertible, with inverse z̄r (ρ) satisfying z∗(x, z, t) = z̄r (ρ(x, z, t)),
an alternative expression for Ea is

Ea(x, z, t) = g

∫ ρ(x,z,t)

ρ̄(z)

(z − z̄r (s)) ds (1.3)

(Shepherd 1993; Scotti et al. 2006; Lamb 2007).
The perturbation and potential energy densities are related by

Ea = Ew + (ρ̄r (z)gz + p̄r (z)) − (ρz∗g + p̄r (z
∗)), (1.4)

where p̄r (z) is a reference pressure in hydrostatic balance with ρ̄r (z). If the reference
density is invertible we can define

f (ρ) = −ρz̄r (ρ)g − p̄r (z̄r (ρ)), (1.5)

and it follows that

Ea = Ew + f (ρ) − f (ρ̄). (1.6)

The main purpose of this note is to point out a further advantage, namely that
when determining the available potential energy of an isolated feature in an infinite
domain, the far-field density can be used as the reference density. Integrating Ea

across the finite region occupied by the isolated feature gives the available potential
energy. In contrast, when integrating Ew the far-field density cannot be used as the
reference density. Instead, it is necessary to calculate the APE in a finite domain by
sorting the density field and then taking the limit as the length of the domain goes to
infinity (Hebert 1988). Hebert (1988) also considered a Boussinesq available potential
energy density (Reid, Elliot & Olson 1981) which is a small-amplitude approximation
to Ea . He showed that its accuracy is restricted to small-amplitude perturbations. Use
of the available potential energy density Ea has no such restriction.

This paper is organized as follows. In §2 the theoretical foundations of the two
formulations are presented. In §3 we prove that the two formulations are equivalent.
This was demonstrated previously by Holliday & McIntyre (1981); however their
proof assumed an infinitely differentiable reference density with a convergent Taylor
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Series. The proof presented here is valid for discontinuous stratifications such as a
two-layer fluid. Section 3 concludes with an example, consisting of a two-layer fluid
with an isolated square-well perturbation, which illustrates some of the differences
between the two formulations. In particular it is shown that the spatial distributions
of Ew and Ea are different and that in order to compute the APE of the square-well
depression in an infinite domain one can use the far-field density as the reference
density in the expression for Ea and integrate over the isolated feature. It is also shown
that this cannot be done when using Ew . The difference arises because the vertical
integral of Ea is quadratic in the amplitude of the perturbation while the vertical
integral of Ew has a term that is linear in amplitude. In §4 we extend this result by
proving that for a general isolated feature the available potential energy in an infinite
domain can be calculated by integrating the available potential energy density using
the far-field density as the reference density state. Results are summarized in §5.

2. Available potential energy formulations
For simplicity we consider a two-dimensional domain. The results are equally valid

for three-dimensional features as, for example, can be deduced by sorting the density
field in each horizontal direction separately. The available potential energy in a closed
domain (x, z) ∈ [−L, L] × [−H, 0] is the integral of the perturbation potential energy
Ew = ρwgz:

APEL =

∫ L

−L

∫ 0

−H

ρwgz dz dx, (2.1)

where

ρw(x, z, t) = ρ(x, z, t) − ρ̄L(z). (2.2)

Here ρ(x, z, t) is the fluid density and the reference density ρ̄L(z) is the adiabatically
rearranged density field defined by the requirement that it minimizes the potential
energy of the system. The resulting density field is a non-increasing function of z

and is independent of time by virtue of the assumed non-diffusive nature of the
fluid; however for realistic flows it will be time dependent. We assume that there
exists a differentiable, one-to-one, volume-preserving mapping (x, z) = ΦL(x ′, z′, t) =
(x∗

L(x ′, z′, t), z∗
L(x ′, z′, t)) between the original and final states. Thus, a fluid parcel

at (x ′, z′, t) in the perturbed state has height z∗
L(x ′, z′, t) in the reference state. Let

Φ−1
L (x∗, z∗, t) = (xL(x∗, z∗, t), zL(x∗, z∗, t)) be the inverse. There is no restriction to

perturbed states with no density overturns. The density of a fluid particle is preserved
under the mapping,

ρ̄L(z∗
L(x ′, z′, t)) = ρ(x ′, z′, t). (2.3)

Under this mapping∫ L

−L

∫ 0

−H

ρ̄L(z)z dx dz =

∫ L

−L

∫ 0

−H

ρ(x ′, z′, t)z∗
L(x ′, z′, t)JL(x ′, z′, t) dx ′ dz′, (2.4)

where JL is the Jacobian of the transformation which, since the mapping is volume
preserving, is equal to one. The density field need not be continuous, so the results
below are applicable to multi-layered fluids. Differentiability of the mapping does
impose some conditions. For example, the perturbed density field cannot have extrema
in the interior of the fluid.
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Figure 1. The shaded region R is bounded by x = ±L, z = −H and z = zL(x∗, z∗). Under
the mapping ΦL the upper boundary zL(x∗, z∗) goes to z = z∗ which is the mean height of the
surface z = zL(x∗, z∗). The volumes of fluid under z = zL(x∗, z∗) and z = z∗ are identical.

Using (2.4), (2.1) can be rewritten as

APEL =

∫ L

−L

∫ 0

−H

gρ(x, z, t)(z − z∗(x, z, t)) dz dx,

=

∫ L

−L

∫ 0

−H

gρ(x, z, t)z dz dx −
∫ L

−L

∫ 0

−H

gρ(x, z, t)z∗(x, z, t) dz dx,

= PEp − PE r , (2.5)

where PEp is the potential energy of the perturbed state and PE r is the potential
energy of the reference state, called Ep and Eb respectively in Winters et al. (1995).
The area of the region R in the (x, z)-plane (see figure 1) bounded by z = −H and
z = zL(x∗, z∗) for constant z∗ is preserved under the mapping. Hence

2L(z∗ + H ) =
1

2

∮
∂R

(x, z) · n̂ds, (2.6)

where ∂R is the boundary of R, which easily leads to

z∗ =
1

2L

∫ L

−L

zL

∂xL

∂x∗ dx∗. (2.7)

Since the relaxed state depends on the region in which the sorting is done, so does the
available potential energy. This is a particular problem in open systems due to the
presence of other features (e.g. eddies, geostrophic currents, internal tides, etc.) in
the far field but is well defined in a closed system such as a tank in the laboratory
(Scotti et al. 2006). A further difficulty with the above expression is that it is a global
one. Fortunately the available potential energy density (1.2) can be used which gives
information about the spatial distribution of available potential energy (Holliday &
McIntyre 1981; Shepherd 1993; Scotti et al. 2006; Lamb 2007). In terms of Ea

APEL =

∫ L

−L

∫ 0

−H

Ea(x, z, t) dz dx, (2.8)

where ρ̄L(z) and z∗
L(x, z, t) are the reference density and reference height of the fluid

parcels used in the expression for Ea . The equivalence of the two formulations is
proved in the next section.
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The equations governing the evolution of the flow are those for an inviscid, non-
diffusive fluid in a rotating reference frame

ρ
Du

Dt
+ ρ2Ω × u = −∇p − ρg k̂, (2.9)

Dρ

Dt
= 0, (2.10)

∇ · u = 0. (2.11)

Here u = (u, v, w) is the velocity vector, D/Dt = ∂/∂t+u · ∇ is the material derivative,

Ω is the angular velocity of the Earth, p the pressure, k̂ is the unit vector in the
vertical direction and g is the gravitational acceleration. From these a conservation
law for Ek + Ew ,

∂

∂t
(Ek + Ew) + ∇ · ((Ek + Ew + ρ̄Lgz + p̄L(z) + pw(x, z, t))u) = 0, (2.12)

is easily derived. Here the pressure p has been split into a part in hydrostatic balance
with the reference density,

p̄L(z) =

∫ 0

z

ρ̄L(z)g dz, (2.13)

and a remainder pw(x, z, t), associated with the perturbation. The latter could be
further separated into a surface perturbation ps(x, t), a part in hydrostatic balance
with the density perturbution and a non-hydrostatic contribution (Venayagamoorthy
& Fringer 2005; Moum et al. 2007).

For a wave field in the absence of a barotropic flow the horizontal flux terms uρ̄Lgz

and up̄L are linear in the perturbation, uEw is quadratic and uEk is cubic. For periodic
waves the linear flux terms have zero mean. These terms were ignored by Moum et al.
(2007) in the context of internal solitary waves; however as shown by Lamb (2007), for
internal solitary waves these terms are non-zero and make the dominant contribution
to the energy flux. This is easily shown by considering weakly nonlinear solitary
waves. Introducing a stream function Ψ such that (u, w) = (Ψz, −Ψx) with boundary
conditions Ψ = 0 at z = −H, 0 assuming no barotropic flow, the linear flux terms
can be written as ∫ 0

−H

u(ρ̄Lgz + p̄L) dz = −
∫ 0

−H

Ψ
dρ̄L

dz
gz dz (2.14)

For long, weakly nonlinear waves in the absence of rotation, the stream function
satisfies

Ψ
dρ̄L

dz
g = c2(ρ̄LΨz)z, (2.15)

where c is the linear long wave propagation speed, giving∫ 0

−H

u(ρ̄Lgz + p̄L) dz = −c2Hρbub(x, t) +
c4

g
(ρbub(x, t) − ρsus(x, t)), (2.16)

where the subscripts b and s refer to values along the bottom and surface. Making the
Boussinesq approximation the term with the factor c4/g is absent and ρb is replaced
by the reference density ρ0 in the first term, clearly showing this term is generally
non-zero.
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The pseudoenergy Epseudo = Ek + Ea satisfies the pseudoenergy equation

∂

∂t
(Ek + Ea) + ∇ · (u(Ek + Ea + pw)) = 0 (2.17)

(Holliday & McIntyre 1981; Scotti et al. 2006; Lamb 2007), which is simpler than
(2.12). There are no flux terms linear in the perturbation: the horizontal flux upw is
quadratic in the perturbation while the other two flux terms are cubic.

3. Comparison of Ew and Ea

In this section we first show that under fairly general conditions

∫ L

−L

∫ 0

−H

Ew dz dx =

∫ L

−L

∫ 0

−H

Ea dz dx, (3.1)

and then present a simple example to illustrate some key concepts.
A simple argument, first presented by Holliday & McIntyre (1981), shows that the

time derivatives of the two integrals above are equal. The essence of their argument is
as follows. Because the flow is incompressible, assuming no flow through the lateral
boundaries at x = ±L so that [−L, L] × [−H, 0] is a material volume,

d

dt

∫ L

−L

∫ 0

−H

Ea,w dz dx =

∫ L

−L

∫ 0

−H

DEa,w

Dt
dz dx. (3.2)

From (2.17) and (2.12) the material derivatives of Ea and Ew differ by the divergence

of a flux vector of the form �∇ · (uh). In particular, the flux vector is proportional to
u and hence is zero on the boundaries. It follows that

d

dt

∫ L

−L

∫ 0

−H

Ea dz dx =
d

dt

∫ L

−L

∫ 0

−H

Ew dz dx. (3.3)

Thus, if the two integrals are equal initially they remain equal. This result also
holds in a laterally unbounded domain assuming that u → 0 as x → ±∞. For a
viscous, non-diffusive fluid u → 0 and ρ(x, z, t) → ρ̄L(z) as t → ∞, in which case Ea

and Ew both go to zero. Since the integrals of Ea and Ew are then identical in the
limit t → ∞ they must be identical at all times.

We next demonstrate the equality of the two formulations directly. As this approach
does not use time derivatives it is valid for a viscous, diffusive fluid. Holliday &
McIntyre (1981) proved their equivalence by noting that ρ(x, z) = ρ̄L(z − z∗

L(x, z, t))
and by then expanding in a Taylor series about z. This requires that ρ̄L be infinitely
differentiable and also imposes a limit on the amplitude of the perturbation that
can be somewhat restrictive. For example, for the hyperbolic tangent stratification
ρ̄L = ρ0(1 − δρ tanh((z − z0)/d)), the Taylor series expansion about z = z0 has a
radius of convergence of πd/2 ≈ 1.57d . The following proof has no such limitation
and does not require ρ(x, z, t) to be differentiable. Hence is it applicable to layered
stratifications.

Consider∫ L

−L

∫ 0

−H

Ea dz dx = g

∫ L

−L

∫ 0

−H

∫ z∗
L(x,z,t)

z

(ρ̄L(s) − ρ(x, z, t)) ds dz dx. (3.4)
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(a)

z0

0 λ L

(b)

ρ1 + ∆ρρ1 + ∆ρ

ρ1ρ1

z0

z0 – aLz0 – aL

z0 – a

0 L

Figure 2. Example two-layer stratification. (a) Perturbed stratification. (b) Rest state.

Integrating the integral in z of the piece involving ρ̄L(s) by parts, using z∗
L(x, z, t) = z

along z = −H, 0, and (2.3) and (2.4) gives

∫ L

−L

∫ 0

−H

Ea dz dx = g

∫ L

−L

∫ 0

−H

{
ρz − zρ

∂z∗
L

∂z

}
dz dx. (3.5)

Using the transformation (x∗, z∗) = ΦL(x, z) in the second term in the integrand gives

∫ L

−L

∫ 0

−H

Ea dz dx = g

∫ L

−L

∫ 0

−H

ρz dx dz − g

∫ L

−L

∫ 0

−H

ρ̄L(z∗)zL(x∗, z∗)
∂xL

∂x∗ dz∗ dx∗. (3.6)

Using (2.7) then gives the result.

3.1. A simple example

To illustrate some key results consider the perturbed two-layer stratification shown
in figure 2(a) (for other examples see Hebert (1988)). The upper layer has density ρ1

and the lower layer density ρ2 = ρ1 + �ρ. The perturbed interface takes the form of
a square well, with the interface at

z =

{
z0 − a if 0 < x < λ

z0 if λ < x < L.
(3.7)

For this closed system, the interface in the reference density, shown in figure 2(b), is
at z = z0 − aL where

λa = LaL. (3.8)

Consider the region 0 < x < λ. For z > z0 − aL a fluid particle has rest height
above zo − aL so ρ̄(s) − ρ = 0 for z < s < z∗, hence Ea = 0 if z > z0 − aL. Similarly
Ea is zero for z < z0 − a. For z0 − a < z < z0 − aL, fluid at height z has rest height
above z0 − aL, i.e. z∗ > z0 − aL. In this case

ρ̄L(s) − ρ =

{
0 if s > z0 − aL

�ρ if z < s < z0 − aL,
(3.9)
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so

g

∫ z∗

z

(ρ̄L − ρ) ds = g

∫ z0−aL

z

(ρ̄L − ρ) ds = −g�ρ(z − (z0 − aL)). (3.10)

Summarizing, for 0 < x < λ,

Ea =

⎧⎪⎨
⎪⎩

0 if z > z0 − aL

−g�ρ(z − (z0 − aL)) if z0 − a < z < z0 − aL

0 if z < z0 − a.

(3.11)

Similar considerations show that for λ < x < L,

Ea =

⎧⎪⎨
⎪⎩

0 if z > z0

g�ρ(z − (z0 − aL)) if z0 − aL < z < z0

0 if z < z0 − aL.

(3.12)

Note that Ea is always positive. We now integrate Ea to find the available potential
energy. The contribution from 0 < x < λ is

−λg�ρ

∫ z0−aL

z0−a

(z − (z0 − aL)) dz = g
�ρ

2
λ(a − aL)2, (3.13)

while the contribution from λ < x < L is

(L − λ)

∫ z0

z0−aL

(z − (z0 − aL)) dz = (L − λ)a2
L. (3.14)

Summing gives

APEL = g
�ρ

2
{λ(a − aL)2 + (L − λ)a2

L} = g
�ρ

2
{λa2 − La2

L}, (3.15)

since λa = LaL.
Now consider the integral of Ew . For 0 < x < λ,

Ew =

⎧⎪⎨
⎪⎩

0 if z > z0 − aL

−g�ρz if z0 − a < z < z0 − aL

0 if z < z0 − a,

(3.16)

while for λ < x < L,

Ea =

⎧⎪⎨
⎪⎩

0 if z > z0

g�ρz if z0 − aL < z < z0

0 if z < z0 − aL.

(3.17)

Ew will take on both positive and negative values unless z0 − aL = 0. Integrating Ew ,
the contribution from 0 < x < λ is

λ

∫ z0−aL

z0−a

−�ρgz dz = g
�ρ

2
{λ

(
−2z0(a − aL) + a2 − a2

L

)
}, (3.18)

while the contribution from λ < x < L is

(L − λ)

∫ z0

z0−aL

�ρgz dz = g
�ρ

2
{(L − λ)

(
2z0aL − a2

L

)
}. (3.19)

Summing the two, using λa = LaL, recovers (3.15).
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Next, consider the limit L → ∞. As L → ∞, aL → 0 while LaL = λa remains
constant. Hence La2

L → 0 and

APEL → APE∞ = λg
�ρ

2
a2. (3.20)

This is the limiting contribution of the integral of Ea in 0 < x < λ. The region x > λ
makes no contribution in the limit L → ∞. When integrating Ew , on the other hand,
as L → ∞ the contribution from 0 < x < λ is

λg
�ρ

2
(−2z0a + a2), (3.21)

while the region x > λ contributes

λg
�ρ

2
(2z0a). (3.22)

The sum recovers (3.20); however the region outside the perturbation now makes a
finite contribution in the limit L → ∞. The terms which are linear in a depend on the
location of the zero height, that is they depend on the choice of coordinate systems.
They disappear if the coordinate system is chosen such that z0 = 0.

Suppose one takes the limit L → ∞ before determining the reference density ρ̄(z).
Doing so gives ρ̄(z) = ρ1 for z > z0 and ρ1 + �ρ for z < z0. The available potential
energy density is now

Ea =

{−g�ρ(z − z0) if 0 < x < λ and z0 − a < z < z0

0 otherwise,
(3.23)

the integral of which recovers (3.20). Integrating the limiting form of Ew , in contrast,
gives ∫ λ

−λ

∫ 0

−H

(ρ − ρ̄)gz dx dz = −λg�ρ

∫ z0

z0−a

z dz = λg
�ρ

2
(a2 − 2az0), (3.24)

which is incorrect. Furthermore the results depend on the coordinate system (i.e. the
value of zo). Thus, to find APE∞ using Ea one can use the far-field density as the
reference density. This is not possible when using Ew (Hebert 1988).

The limiting APE can be written as

APE∞ = g
�ρ

2

∫ ∞

0

η2(x) dx, (3.25)

where

η =

{−a if 0 < x < λ

0 if x > λ
(3.26)

is the interface displacement from its far-field height. This is the expression for the
APE of an internal solitary wave in a two-layer fluid used by Bogucki & Garrett
(1993).

4. The available potential energy of an isolated feature in an infinite domain
We now demonstrate that the far-field density ρ̄(z) can be used as the reference

density when calculating the available potential energy of a general isolated feature
in an infinite domain by integrating Ea .
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Consider an isolated disturbance confined to lie in the horizontal domain Dλ =
[−λ, λ] so that ρ(x, z) = ρ̄(z) for |x| > λ. Consider a domain DL = [−L, L] where
L > λ, where ultimately we will let L → ∞. Time dependence is suppressed as we do
not consider temporal evolution in this section. We want to show that

lim
L→∞

APEL =

∫ λ

−λ

∫ 0

−H

lim
L→∞

Ea dz dx. (4.1)

Let q(x, z) be a differentiable scalar field with non-zero gradient with the property
that fluid parcels with the same value of q have the same density. We can take q as
limL→∞ z∗

L(x, z). Under (x, z) → ΦL(x, z), q → q̄L(z∗). Let q = q̄(z) for |x| > λ and
denote the inverses of q̄L(z) and q̄(z) by z̄L(q) and z̄(q). It is easy to verify that for
x ∈ (−λ, λ)

z̄L(q) = z̄(q) +
λ

L
[z̄λ(q) − z̄(q)]. (4.2)

Using this and the fact that ρ(x, z) = ρ̄(z) for |x| > λ, expression (2.5) for APEL

can be written as

APEL =

∫ λ

−λ

∫ 0

−H

ρ(x, z)g
{

z − z̄(q(x, z)) − λ

L

[
z̄λ(q(x, z)) − z̄(q(x, z))

]}
dz dx

−2λ

(
1 − λ

L

)∫ 0

−H

gρ̄(z)[z̄λ(q̄(z)) − z] dz. (4.3)

Letting L → ∞ gives

APE∞ =

∫ λ

−λ

∫ 0

−H

{ρ(x, z)g[z − z̄(q(x, z))] − ρ̄(z)g[z̄λ(q̄(z)) − z)]} dz dx. (4.4)

If ρ̄(z) is invertible then one can choose q = ρ, in which case this expression could
be used to compute the available potential energy given the density field ρ(x, z) and
far-field density ρ̄(z). We now need to show that, using ρ̄(z) as the reference density
for Ea , this is equal to

APE =

∫ λ

−λ

∫ 0

−H

Ea dz dx, (4.5)

since Ea = 0 for |x| > λ. Using the definition of Ea

APE =

∫ λ

−λ

∫ 0

−H

{
ρ(x, z)g[z − z̄(q(x, z))] + g

∫ z̄(q(x,z))

z

ρ̄(s) ds

}
dz dx, (4.6)

hence we need to show that∫ λ

−λ

∫ 0

−H

ρ̄(z)g
[
z − z̄λ(q̄(z))

]
dz =

∫ λ

−λ

∫ 0

−H

g

∫ z̄(q(x,z))

z

ρ̄(s) ds dz. (4.7)

Integrating by parts, using z̄(q(x, 0)) = 0 and z̄(q(x, −H )) = −H ,∫ 0

−H

g

∫ z̄(q(x,z))

z

ρ̄(s) ds dz = g

∫ 0

−H

{
ρ̄(z)z − zρ(x, z)

∂z̄

∂q
(q(x, z))

∂q

∂z
(x, z)

}
dz, (4.8)

thus the problem reduces to showing that∫ λ

−λ

∫ 0

−H

zρ(x, z)
∂z̄

∂q

(
q(x, z)

)∂q

∂z
(x, z) dz =

∫ λ

−λ

∫ 0

−H

ρ̄(z)z̄λ(q̄(z)) dx dz. (4.9)
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This is straightforward if q(x, z) is invertible in z with inverse z(x, q), in which case
the change of variables z = z(x, q̄(s)) quickly leads to the result. More generally,
consider the left-hand side of (4.9), which we denote by I . Changing variables to
(x∗, z∗) = Φλ(x, z) the integral on the left-hand side can be written as

I = g

∫ λ

−λ

∫ 0

−H

ρ̄λ(z
∗)

∂z̄

∂q
(q̄λ(z

∗))
∂q̄λ

∂z
(z∗)zλ(x

∗, z∗)
∂z∗

λ

∂z

(
Φ−1

L (x∗, z∗)
)
dz∗ dx∗. (4.10)

Now

∂z∗
λ

∂z

(
Φ−1

L (x∗, z∗)
)

=
∂xλ

∂x∗ (x∗, z∗), (4.11)

and ∫ λ

−λ

zλ(x
∗, z∗)

∂xλ

∂x∗ (x∗, z∗) dx∗ = z̄λ(q̄λ(z
∗)) (4.12)

(see 2.7), so the integral can be written as

I = g

∫ λ

−λ

∫ 0

−H

ρ̄λ(z
∗)

∂z̄

∂q
(q̄λ(z

∗))
∂q̄λ

∂z
(z∗)z̄λ(q̄λ(z

∗)) dz∗ dx∗. (4.13)

We now introduce a new mapping f (z) via q̄(z) = q̄λ(f (z)). Changing the variable of
integration from z∗ to z where z∗ = f (z) then leads to

I = g

∫ λ

−λ

∫ 0

−H

ρ̄(z)z̄λ(q̄(z)) dz dx∗, (4.14)

since ρ̄(z) = ρ̄λ(f (z)), proving the desired result.

5. Summary
We have shown that the available potential energy can be calculated by either

integrating the perturbation potential energy Ew or the available potential energy
density Ea . This generalizes the result of Holliday & McIntyre (1981) which was
restricted to smooth stratifications for which the density perturbation could be written
in terms of a convergent Taylor series expansion of the reference stratification. Use of
the available potential energy density Ea has several advantages. The pseudoenergy
density Ek + Ea satisfies a relatively simple conservation law. Ea is positive definite,
independent of the coordinate system and recovers the linear potential energy density
in the small-amplitude limit. It also simplifies the calculation of the available potential
energy of an isolated feature in an unbounded domain because the far-field density
can be used as the reference density. This is a useful property, for example, when
comparing the available potential energies in internal solitary waves before and after
reflection from a sloping bottom. Using Ea there is no need to sort the density fields
to find a reference density in order to calculate the APE. Integrating Ew to find the
APE, on the other hand, requires sorting the density to find the reference density in
a finite domain and then finding the limiting value of the APE as the domain length
goes to infinity.

Use of Ea could also simplify estimates of the APE of an isolated wave in
observations in which the integral of Ew has been used, necessitating sorting the
density field over a large domain to obtain the reference density (Klymak et al. 2006;
Moum et al. 2007).
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The above results can be readily extended to three dimensions and to flows with a
free surface. The latter is illustrated by the example considered in §3 for which the
interface could be the air-water interface. In this example the rigid lid could also be
at z0 demonstrating that the ideas presented here are also applicable to perturbations
that include density anomalies, e.g. warm-core eddies or internal solitary waves with
a trapped core.

Finally, it should be noted that it is not clear that the APE in an unbounded
domain is the most physically relevent APE. For example, when an isolated
wave in an unbounded domain breaks, resulting in mixing, it does so in a
finite subregion. What is the ‘ideal’ size of the domain in which to calculate the
APE? There are also open problems associated with estimating the APE of non-
isolated features. These and other interesting questions about APE remain for future
consideration.

This work was supported by a Research Project Grant funded by the Canadian
Foundation for Climate and Atmospheric Science.
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